13 research outputs found

    Normalization and correction for batch effects via RUV for RNA-seq data: practical implications for Breast Cancer Research

    Full text link
    The whole transcriptome contains information about nonsense, missense, silent, in-frame and frameshift mutations, as observed at whole-exome level, as well as splicing and (allelic) gene-expression changes which are missed by DNA analysis. One important step in the analysis of gene expression data arising from RNA-seq is the detection of differential expression (DE) levels. Several methods are available and the choice is sometimes controversial. For a reliable DE analysis that reduces False Positive DE genes, and accurate estimation of gene expression levels, a good and suitable normalization approach (including correction for confounders) is mandatory. Several normalization methods have been proposed to correct for both within-sample and between-sample biases. RUV (Removing Unwanted Variation) is one of them and has the advantage to correct for batch effects including potentially unknown unwanted variation in gene expression. In this study, we present a comparison on real-life Illumina paired-end sequencing data for Estrogen-Receptor-Positive (ER+) Breast Cancer tissues versus matched controls between RUV (RUVg using in silico negative control genes) and more commonly used methods for RNA-seq data normalization, such as DESeq2, edgeR, and UQ. The set of in silico empirical negative control genes for RUVg was defined as the set of least significant DE genes obtained after a first DE analysis performed prior to RUVg correction. Box plots of relative log expression (RLE) among the samples and PCA plots show that RUVg performs well and leads to a stabilization of read count across samples with a clear clustering of biological replicates

    A miRNA expression based diagnostic tool for breast cancer using random forests

    Full text link
    We developed a novel diagnostic tool for breast cancer using circulating miRNA expression levels as features of a supervised machine learning problem. We showed very good results on an independent validation cohort.microARNs circulants dans le cancer du sei

    Exome sequencing of tumors: relevance in copy-number alteration (CNA) analysis and fixed tissue samples.

    Full text link
    Genomic DNA has been extracted from both cryopreserved and formalin-fixed paraffin-embedded forms of 2 different tumor samples (triple negative, and Her2+). Exome sequencing has been performed on all 4 forms, as well as SNP and CNA detection. A comparison of the various metrics and results related to the sequencing, mapping, and variants detection has been done, outlining what can, and can’t be done with exome data sequenced from cryopreserved and FFPE tissue.Développement sur base du séquençage d'ADN à haut débit de tests théranostiques pour le cancer du sei

    Evaluation of BRCA1-related molecular features and microRNAs as prognostic factors for triple negative breast cancers.

    Full text link
    BACKGROUND: The BRCA1 gene plays a key role in triple negative breast cancers (TNBCs), in which its expression can be lost by multiple mechanisms: germinal mutation followed by deletion of the second allele; negative regulation by promoter methylation; or miRNA-mediated silencing. This study aimed to establish a correlation among the BRCA1-related molecular parameters, tumor characteristics and clinical follow-up of patients to find new prognostic factors. METHODS: BRCA1 protein and mRNA expression was quantified in situ in the TNBCs of 69 patients. BRCA1 promoter methylation status was checked, as well as cytokeratin 5/6 expression. Maintenance of expressed BRCA1 protein interaction with BARD1 was quantified, as a marker of BRCA1 functionality, and the tumor expression profiles of 27 microRNAs were determined. RESULTS: miR-548c-5p was emphasized as a new independent prognostic factor in TNBC. A combination of the tumoral expression of miR-548c and three other known prognostic parameters (tumor size, lymph node invasion and CK 5/6 expression status) allowed for relapse prediction by logistic regression with an area under the curve (AUC) = 0.96. BRCA1 mRNA and protein in situ expression, as well as the amount of BRCA1 ligated to BARD1 in the tumor, lacked any associations with patient outcomes, likely due to high intratumoral heterogeneity, and thus could not be used for clinical purposes. CONCLUSIONS: In situ BRCA1-related expression parameters could be used for clinical purposes at the time of diagnosis. In contrast, miR-548c-5p showed a promising potential as a prognostic factor in TNBC

    Exome copy number variation detection: Use of a pool of unrelated healthy tissue as reference sample

    Full text link
    An increasing number of bioinformatic tools designed to detect CNVs (copy number variants) in tumor samples based on paired exome data where a matched healthy tissue constitutes the reference have been published in the recent years. The idea of using a pool of unrelated healthy DNA as reference has previously been formulated but not thoroughly validated. As of today, the gold standard for CNV calling is still aCGH but there is an increasing interest in detecting CNVs by exome sequencing. We propose to design a metric allowing the comparison of two CNV profiles, independently of the technique used and assessed the validity of using a pool of unrelated healthy DNA instead of a matched healthy tissue as reference in exome-based CNV detection. We compared the CNV profiles obtained with three different approaches (aCGH, exome sequencing with a matched healthy tissue as reference, exome sequencing with a pool of eight unrelated healthy tissue as reference) on three multiple myeloma samples. We show that the usual analyses performed to compare CNV profiles (deletion/amplification ratios and CNV size distribution) lack in precision when confronted with low LRR values, as they only consider the binary status of each CNV. We show that the metric-based distance constitutes a more accurate comparison of two CNV profiles. Based on these analyses, we conclude that a reliable picture of CNV alterations in multiple myeloma samples can be obtained from whole-exome sequencing in the absence of a matched healthy sample

    Circulating microRNA-based screening tool for breast cancer

    Full text link
    peer reviewedCirculating microRNAs (miRNAs) are increasingly recognized as powerful biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels were measured to be used as an alternative screening procedure to mammography for breast cancer diagnosis. A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A diagnostic model was designed based on the expression of 8 miRNAs measured first in a profiling cohort composed of 41 primary breast cancers and 45 controls, and further validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors. A receiver operating characteristic curve derived from the 8-miRNA random forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy of the diagnostic tool remained unchanged considering age and tumor stage. The miRNA signature correctly identified patients with metastatic breast cancer. The use of the classification model on cohorts of patients with breast cancers in remission and with gynecologic cancers yielded prediction distributions similar to that of the control group. Using a multivariate supervised learning method and a set of 8 circulating miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer

    Transcriptome-wide analysis of natural antisense transcripts shows their potential role in breast cancer.

    Full text link
    Non-coding RNAs (ncRNA) represent 1/5 of the mammalian transcript number, and 90% of the genome length is transcribed. Many ncRNAs play a role in cancer. Among them, non-coding natural antisense transcripts (ncNAT) are RNA sequences that are complementary and overlapping to those of either protein-coding (PCT) or non-coding transcripts. Several ncNATs were described as regulating protein coding gene expression on the same loci, and they are expected to act more frequently in cis compared to other ncRNAs that commonly function in trans. In this work, 22 breast cancers expressing estrogen receptors and their paired adjacent non-malignant tissues were analyzed by strand-specific RNA sequencing. To highlight ncNATs potentially playing a role in protein coding gene regulations that occur in breast cancer, three different data analysis methods were used: differential expression analysis of ncNATs between tumor and non-malignant tissues, differential correlation analysis of paired ncNAT/PCT between tumor and non-malignant tissues, and ncNAT/PCT read count ratio variation between tumor and non-malignant tissues. Each of these methods yielded lists of ncNAT/PCT pairs that were enriched in survival-associated genes. This work highlights ncNAT lists that display potential to affect the expression of protein-coding genes involved in breast cancer pathology
    corecore